Translocation of the tetraspanin CD63 in association with human eosinophil mediator release.
نویسندگان
چکیده
The tetraspanin CD63 (also known as LAMP-3) has been implicated in phagocytic and intracellular lysosome-phagosome fusion events. It is also present in eosinophils, with predominant expression on crystalloid granule membrane. However, its role in eosinophil function is obscure. We hypothesized that CD63 is associated with intracellular events involved in eosinophil activation and mediator release. We used a combination of confocal immunofluorescence microscopy, flow cytometry, and secretion assays, including beta-hexosaminidase, eosinophil peroxidase, and RANTES, to examine CD63 expression, intracellular localization, and its association with cell activation and mediator release. In resting eosinophils, CD63 immunoreactivity was localized to plasma and crystalloid granule membranes. In interferon-gamma (IFN-gamma)- or C5a/CB-stimulated cells (10 minutes), intracellular CD63 appeared to shift to the cell periphery and plasma membrane, while stimulation with a cocktail of interleukin-3 (IL-3)/IL-5/granulocyte-macrophage colony-stimulating factor induced the appearance of discrete intracellular clusters of CD63 immunoreactivity. IFN-gamma induced mobilization of CD63 to the cell periphery, which coincided with selective mobilization of RANTES prior to its release, implying CD63 association with piecemeal degranulation. Agonist-induced CD63 mobilization and cell surface up-regulation was associated with beta-hexosaminidase, eosinophil peroxidase, and RANTES release. Dexamethasone as well as genistein (a broad-spectrum inhibitor of tyrosine kinases) inhibited agonist-induced intracellular mobilization of CD63 and RANTES together with cell surface up-regulation of CD63 and mediator release. This is the first report of an association between CD63 mobilization and agonist-induced selective mediator release, which may imply the involvement of CD63 in eosinophil activation and piecemeal degranulation.
منابع مشابه
PMN degranulation in relation to CD63 expression and genetic polymorphisms in healthy individuals and COPD patients.
Polymorphonuclear neutrophils (PMNs) play an important role in chronic obstructive pulmonary disease (COPD) pathogenesis. The tetraspanin CD63 is a membrane marker of azurophilic granules and is actively involved in the process of PMN endocytosis and azurophilic granule exocytosis. In this study, we investigated genetic polymorphisms of the CD63 gene, quantified CD63 expression and PMN myeloper...
متن کاملSIRPα/CD172a regulates eosinophil homeostasis.
Eosinophils are abundant in the lamina propria of the small intestine, but they rarely show degranulation in situ under steady-state conditions. In this study, using two novel mAbs, we found that intestinal eosinophils constitutively expressed a high level of an inhibitory receptor signal regulatory protein α (SIRPα)/CD172a and a low, but significant, level of a tetraspanin CD63, whose upregula...
متن کاملIntragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils.
Eosinophils, leukocytes involved in allergic, inflammatory and immunoregulatory responses, have a distinct capacity to rapidly secrete preformed granule-stored proteins through piecemeal degranulation (PMD), a secretion process based on vesicular transport of proteins from within granules for extracellular release. Eosinophil-specific granules contain cytokines and cationic proteins, such as ma...
متن کاملPalmitoylation supports assembly and function of integrin–tetraspanin complexes
As observed previously, tetraspanin palmitoylation promotes tetraspanin microdomain assembly. Here, we show that palmitoylated integrins (alpha3, alpha6, and beta4 subunits) and tetraspanins (CD9, CD81, and CD63) coexist in substantially overlapping complexes. Removal of beta4 palmitoylation sites markedly impaired cell spreading and signaling through p130Cas on laminin substrate. Also in palmi...
متن کاملPalmitoylation-dependent association with CD63 targets the Ca2+ sensor synaptotagmin VII to lysosomes
Syt VII is a Ca(2+) sensor that regulates lysosome exocytosis and plasma membrane repair. Because it lacks motifs that mediate lysosomal targeting, it is unclear how Syt VII traffics to these organelles. In this paper, we show that mutations or inhibitors that abolish palmitoylation disrupt Syt VII targeting to lysosomes, causing its retention in the Golgi complex. In macrophages, Syt VII is tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 99 11 شماره
صفحات -
تاریخ انتشار 2002